Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2013 ] Miki Y, Pogni R, Acebes S, Lucas F, Fernandez-Fueyo E, Baratto MC, Fernández MI, de los Ríos V, Ruiz-Dueñas FJ, Sinicropi A, Basosi R, Hammel KE, Guallar V, Martínez AT Formation of a tyrosine adduct involved in lignin degradation by Trametopsis cervina lignin peroxidase: A novel peroxidase activation mechanism Biochem. J., 452: 575-584
[ 2013 ] Peter S, Karich A, Ullrich R, Gröbe G, Scheibner K, Hofrichter M Enzymatic one-pot conversion of cyclohexane into cyclohexanone: Comparison of four fungal peroxygenases J. Mol. Cat. B, doi: 10.1016/j.molcatb.2013.09.016
[ 2013 ] Peter S, Kinne M, Ullrich R, Kayser G, Hofrichter M Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase Enz. Microb. Technol., 52: 370-376
[ 2013 ] Pezzella C, Lettera V, Piscitelli A, Giardina P, Sannia G Transcriptional analysis of Pleurotus ostreatus laccase genes Appl. Microbiol. Biotechnol., 97: 705-717
[ 2013 ] Piontek K, Strittmatter E, Ullrich R, Gröbe G, Pecyna MJ, Kluge M, Scheibner K, Hofrichter M, Plattner D Structural Basis of Substrate Conversion in a New Aromatic Peroxygenase: P450 Functionality with Benefits J. Biol. Chem., 288: 34767-34776
[ 2013 ] Ruiz-Dueñas FJ, Lundell T, Floudas D, Nagy LG, Barrasa JM, Hibbett DS, Martínez AT Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes Mycologia, 105: 1428-1444
year2013
Versatile peroxidase as a valuable tool for generating new biomolecules by homogeneous and heterogeneous cross-linking
Salvachúa D, Prieto A, Mattinen ML, Tamminen T, Liitiä T, Lille M, Willför S, Martínez AT, Martínez MJ, Faulds CB
Enz. Microb. Technol., 52: 303-311
The modification and generation of new biomolecules intended to give higher molecular-mass species for biotechnological purposes, can be achieved by enzymatic cross-linking. The versatile peroxidase (VP) from Pleurotus eryngii is a high redox-potential enzyme with oxidative activity on a wide variety of substrates. In this study, VP was successfully used to catalyze the polymerization of low molecular mass compounds, such as lignans and peptides, as well as larger macromolecules, such as protein and complex polysaccharides. Different analytical, spectroscopic, and rheological techniques were used to determine structural changes and/or variations of the physicochemical properties of the reaction products. The lignans secoisolariciresinol and hydroxymatairesinol were condensed by VP forming up to 8 unit polymers in the presence of organic co-solvents and Mn(2+). Moreover, 11 unit of the peptides YIGSR and VYV were homogeneously cross-linked. The heterogeneous cross-linking of one unit of the peptide YIGSR and several lignan units was also achieved. VP could also induce gelation of feruloylated arabinoxylan and the polymerization of β-casein. These results demonstrate the efficacy of VP to catalyze homo- and hetero-condensation reactions, and reveal its potential exploitation for polymerizing different types of compounds.
Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón