Optimized oxidoreductases for medium and large scale industrial biotransformations
Total records:
126
Pages:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
[ 2013 ]
Salvachúa D, Martínez AT, Tien M, López-Lucendo MF, García F, de los Ríos V, Martínez MJ, Prieto A Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment
Biotechnol. Biofuels, 6: 115-129
[ 2013 ]
Salvachúa D, Prieto A, Mattinen ML, Tamminen T, Liitiä T, Lille M, Willför S, Martínez AT, Martínez MJ, Faulds CB Versatile peroxidase as a valuable tool for generating new biomolecules by homogeneous and heterogeneous cross-linking
Enz. Microb. Technol., 52: 303-311
[ 2013 ]
Strittmatter E, Liers C, Ullrich R, Wachter S, Hofrichter M, Plattner D, Piontek K First Crystal Structure of a Fungal High-Redox Potential Dye-decolorizing Peroxidase: Substrate Interaction Sites and Long-Range Electron Transfer
J. Biol. Chem., 288: 4095-4102
[ 2013 ]
Strittmatter E, Wachter S, Liers C, Ullrich R, Hofrichter M, Plattner D, Piontek K Radical formation on a conserved tyrosine residue is crucial for DyP activity
Arch. Biochem. Biophys., 537: 161-167
[ 2013 ]
Turbe-Doan A, Arfi Y, Record E, Estrada-Alvarado I, Levasseur A Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw
Appl. Microbiol. Biotechnol., 97: 4873-4885
[ 2013 ]
Wang X, Peter S, Ullrich R, Hofrichter M, Groves JT Driving Force for Oxygen-Atom Transfer by Heme-Thiolate Enzymes
Angew. Chem. Int. Ed., 52: 9238-9241
year2013
Radical formation on a conserved tyrosine residue is crucial for DyP activity
Strittmatter E, Wachter S, Liers C, Ullrich R, Hofrichter M, Plattner D, Piontek K
Arch. Biochem. Biophys., 537: 161-167
Dye-decolorizing peroxidases (DyPs) are able to cleave bulky anthraquinone dyes. The recently published crystal structure of AauDyPI reveals that a direct oxidation in the distal heme cavity can be excluded for most DyP substrates. It is shown that a surface-exposed tyrosine residue acts as a substrate interaction site for bulky substrates. This amino acid is conserved in eucaryotic DyPs but is missing in the structurally related chlorite dismutases (Clds). Dye-decolorizing peroxidases of procaryotic origin equally possess a conserved tyrosine in the same region of the polypeptide albeit not at the homologous position.
Official webpage of

[ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by
garcíarincón