Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2015 ] Monza E, Lucas F, Camarero S, Alejaldre LC, Martínez AT, Guallar V Insights into Laccase Engineering from Molecular Simulations: Toward a Binding-Focused Strategy J. Phys. Chem. Lett., 6: 1447-1453
[ 2015 ] Ni Y, Fernandez-Fueyo E, Baraibar AG, Ullrich R, Hofrichter M, Yanase H, Alcalde M, van Berkel WJ, Hollmann F Peroxygenase-Catalyzed Oxyfunctionalization Reactions Promoted by the Complete Oxidation of Methanol Angew. Chem. Int. Ed., doi: 10.1002/anie.201507881
[ 2015 ] Pardo I, Camarero S Laccase engineering by rational and evolutionary design Cell Mol. Life Sci., doi: 10.1007/s00018-014-1824-8
[ 2015 ] Pardo I, Camarero S Exploring the Oxidation of Lignin-Derived Phenols by a Library of Laccase Mutants Molecules, 20: 15929-15943
[ 2015 ] Pezzella C, Guarino L, Piscitelli A How to enjoy laccases Cell Mol. Life Sci., 72: 923-940
[ 2015 ] Pham NH, Hollmann F, Kracher D, Preims M, Haltrich D, Ludwig R Engineering an enzymatic regeneration system for NAD(P)H oxidation J. Mol. Cat. B, 120: 38-46
year2014
Wood and humus decay strategies by white-rot basidiomycetes correlate with two different dye decolorization and enzyme secretion patterns on agar plates
Barrasa JM, Blanco MN, Esteve-Raventós F, Altés A, Checa J, Martínez AT, Ruiz-Dueñas FJ
Fungal Gen. Biol., doi: 10.1016/j.fgb.2014.03.007

During several forays for ligninolytic fungi in different Spanish native forests, 35 whiterot basidiomycetes growing on dead wood (16 species from 12 genera) and leaf litter (19 species from 10 genera) were selected for their ability to decolorize two recalcitrant aromatic dyes (Reactive Blue 38 and Reactive Black 5) added to malt extract agar medium. In this study, two dye decolorization patterns were observed and correlated with two ecophysiological groups (wood and humus white-rot basidiomycetes) and three taxonomical groups (orders Polyporales, Hymenochaetales and Agaricales). Depending on the above groups, different decolorization zones were observed on the dye-containing plates, being restricted to the colony area or extending to the surrounding medium, which suggested two different decay strategies. These two strategies were related to the ability to secrete peroxidases and laccases inside (white-rot wood Polyorales, Hymenochaetales and Agaricales) and outside (white-rot humus Agaricales) of the fungal colony, as revealed by enzymatic tests performed directly on the agar plates. Similar oxidoreductases production patterns were observed when fungi were grown in the absence of dyes, although the set of enzyme released was different. All these results suggest that the decolorization patterns observed could be related with the existence of two decay strategies developed by white-rot basidiomycetes adapted to wood and leaf litter decay in the field. 

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón