Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2014 ] Fernandez-Fueyo E, Castanera ER, Ruiz-Dueñas FJ, López-Lucendo MF, Ramírez L, Pisabarro AG, Martínez AT Ligninolytic peroxidase gene expression by Pleurotus ostreatus: Differential regulation in lignocellulose medium and effect of temperature and pH Fungal Gen. Biol., doi: 10.1016/j.fgb.2014.02.003
[ 2014 ] Fernandez-Fueyo E, Ruiz-Dueñas FJ, Martínez AT Engineering a fungal peroxidase that degrades lignin at very acidic pH Biotechnol. Biofuels, 7: 114
[ 2014 ] Fernandez-Fueyo E, Ruiz-Dueñas FJ, Martínez MJ, Romero A, Hammel KE, Medrano FJ, Martínez AT Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability Biotechnol. Biofuels, 7: 2
[ 2014 ] García-Ruiz E, Maté D, González-Pérez D, Molina-Espeja P, Camarero S, Martínez AT, Ballesteros A, Alcalde M Directed evolution of ligninolytic oxidoreductases: from functional expression to stabilization and beyond In "Cascade Biocatalysis. Integrating Stereoselective and Environmentally Friendly Reactions", First Edition. Edited by Sergio Riva and Wolf-Dieter Fessner. Wiley-VCH Verlag GmbH & Co
[ 2014 ] González-Pérez D, Alcalde M Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae Bioengineered, 5: 254-263
[ 2014 ] González-Pérez D, García-Ruiz E, Ruiz-Dueñas FJ, Martínez AT, Alcalde M Structural determinants of oxidative stabilization in an evolved versatile peroxidase ACS-Catalysis, 4: 3891-3901
year2014
Directed evolution of Unspecific Peroxygenase from Agrocybe aegerita
Molina-Espeja P, García-Ruiz E, González-Pérez D, Ullrich R, Hofrichter M, Alcalde M
Appl. Environ. Microbiol., 80: 3496-3507

Unspecific peroxygenase (UPO) represents a new type of heme-thiolate enzyme with self-sufficient mono(per)oxygenase activity and many potential applications in organic synthesis. With a view to taking advantage of these properties, we subjected the Agrocybe aegerita UPO1 encoding gene to directed evolution in Saccharomyces cerevisiae. To promote functional expression, several different signal peptides were fused to the mature protein and the resulting products tested. Over 9,000 clones were screened using an ad-hoc dual-colorimetric assay that assessed both peroxidative and oxygen-transfer activities. After 5 generations of directed evolution combined with hybrid approaches, 9 mutations were introduced that resulted in a 3,250-fold total activity improvement with no alteration in protein stability. A breakdown between secretion and catalytic activity was performed by replacing the native signal peptide of the original parental type with that of the evolved mutant: the evolved leader increased functional expression 27-fold whereas a 18-fold improvement in kcat/Km for oxygen transfer activity was obtained. The evolved UPO1 was active and highly stable in the presence of organic co-solvents. Mutations in the hydrophobic core of the signal peptide contributed to enhance functional expression up to 8 mg/L, while catalytic efficiencies for peroxidative and oxygen transfer reactions were increased by several mutations in the vicinity of the heme-access channel. Overall, the directed evolution platform described is a valuable point of departure for the development of customized UPOs with improved features and for the study of structure-function relationships.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón