Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2014 ] González-Pérez D, Molina-Espeja P, García-Ruiz E, Alcalde M Mutagenic Organized Recombination Process by Homologous In vivo Grouping (MORPHING) for directed enzyme evolution PlosOne, 9: 3
[ 2014 ] Hofrichter M, Ullrich R Oxidations catalyzed by fungal peroxygenases Curr. Opin. Chem. Biol., 19: 116-125
[ 2014 ] Hori C, [...] , Ferreira P, Ruiz-Dueñas FJ, [...] , Rencoret J, Gutiérrez A, [...] , Martínez AT, [...] , Cullen D Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood PLOS Genetics, 10: 1004759
[ 2014 ] Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, Ludwig R, Haltrich D, Eijsink VG, Horn SJ A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides J. Biol. Chem., 289: 2632-2642
[ 2014 ] Kalum L, Morant MD, Lund H, Jensen J, Lapainaite I, Soerensen NH, Pedersen S, Ostergaard LH, Xu F Enzymatic oxidation of 5-hydroxymethylfurfural and derivatives thereof. WO 2014015256 A2. International Patent Application
[ 2014 ] Kellner H, Luis P, Pecyna MJ, Barbi F, Kapturska D, Krüger D, Zak DR, Marmeisse R, Vandenbol M, Hofrichter M Widespread Occurrence of Expressed Fungal Secretory Peroxidases in Forest Soils PlosOne, 9
year2014
Widespread Occurrence of Expressed Fungal Secretory Peroxidases in Forest Soils
Kellner H, Luis P, Pecyna MJ, Barbi F, Kapturska D, Krüger D, Zak DR, Marmeisse R, Vandenbol M, Hofrichter M
PlosOne, 9

Fungal secretory peroxidases mediate fundamental ecological functions in the conversion and degradation of plant biomass. Many of these enzymes have strong oxidizing activities towards aromatic compounds and are involved in the degradation of plant cell wall (lignin) and humus. They comprise three major groups: class II peroxidases (including lignin peroxidase, manganese peroxidase, versatile peroxidase and generic peroxidase), dye-decolorizing peroxidases, and heme-thiolate peroxidases (e.g. unspecific/aromatic peroxygenase, chloroperoxidase). Here, we have repeatedly observed a widespread expression of all major peroxidase groups in leaf and needle litter across a range of forest ecosystems (e.g. Fagus, Picea, Acer, Quercus, and Populus spp.), which are widespread in Europe and North America. Manganese peroxidases and unspecific peroxygenases were found expressed in all nine investigated forest sites, and dye-decolorizing peroxidases were observed in five of the nine sites, thereby indicating biological significance of these enzymes for fungal physiology and ecosystem processes. Transcripts of selected secretory peroxidase genes were also analyzed in pure cultures of several litter-decomposing species and other fungi. Using this information, we were able to match, in environmental litter samples, two manganese peroxidase sequences to Mycena galopus and Mycena epipterygia and one unspecific peroxygenase transcript to Mycena galopus, suggesting an important role of this litter- and coarse woody debris-dwelling genus in the disintegration and transformation of litter aromatics and organic matter formation.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón