Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2014 ] Fernandez-Fueyo E, Castanera ER, Ruiz-Dueñas FJ, López-Lucendo MF, Ramírez L, Pisabarro AG, Martínez AT Ligninolytic peroxidase gene expression by Pleurotus ostreatus: Differential regulation in lignocellulose medium and effect of temperature and pH Fungal Gen. Biol., doi: 10.1016/j.fgb.2014.02.003
[ 2014 ] Fernandez-Fueyo E, Ruiz-Dueñas FJ, Martínez AT Engineering a fungal peroxidase that degrades lignin at very acidic pH Biotechnol. Biofuels, 7: 114
[ 2014 ] Fernandez-Fueyo E, Ruiz-Dueñas FJ, Martínez MJ, Romero A, Hammel KE, Medrano FJ, Martínez AT Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability Biotechnol. Biofuels, 7: 2
[ 2014 ] García-Ruiz E, Maté D, González-Pérez D, Molina-Espeja P, Camarero S, Martínez AT, Ballesteros A, Alcalde M Directed evolution of ligninolytic oxidoreductases: from functional expression to stabilization and beyond In "Cascade Biocatalysis. Integrating Stereoselective and Environmentally Friendly Reactions", First Edition. Edited by Sergio Riva and Wolf-Dieter Fessner. Wiley-VCH Verlag GmbH & Co
[ 2014 ] González-Pérez D, Alcalde M Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae Bioengineered, 5: 254-263
[ 2014 ] González-Pérez D, García-Ruiz E, Ruiz-Dueñas FJ, Martínez AT, Alcalde M Structural determinants of oxidative stabilization in an evolved versatile peroxidase ACS-Catalysis, 4: 3891-3901
year2014
Engineering a fungal peroxidase that degrades lignin at very acidic pH
Fernandez-Fueyo E, Ruiz-Dueñas FJ, Martínez AT
Biotechnol. Biofuels, 7: 114

Background
Ligninolytic peroxidases are divided into three families: manganese peroxidases (MnPs), lignin peroxidases (LiPs), and versatile peroxidases (VPs). The latter two are able to degrade intact lignins, as shown using nonphenolic lignin model compounds, with VP oxidizing the widest range of recalcitrant substrates. One of the main limiting issues for the use of these two enzymes in lignocellulose biorefineries (for delignification and production of cellulose-based products or modification of industrial lignins to added-value products) is their progressive inactivation under acidic pH conditions, where they exhibit the highest oxidative activities.

Results
In the screening of peroxidases from basidiomycete genomes, one MnP from Ceriporiopsis subvermispora was found to have a remarkable acidic stability. The crystal structure of this enzyme recently became available and, after comparison with Pleurotus ostreatus VP and Phanerochaete chrysosporium LiP structures, it was used as a robust scaffold to engineer a stable VP by introducing an exposed catalytic tryptophan, with different protein environments. The variants obtained largely maintain the acidic stability and strong Mn2+-oxidizing activity of the parent enzyme, and the ability to oxidize veratryl alcohol and Reactive Black 5 (two simple VP substrates) was introduced. The engineered peroxidases present more acidic optimal pH than the best VP from P. ostreatus, enabling higher catalytic efficiency oxidizing lignins, by lowering the reaction pH, as shown using a nonphenolic model dimer.

Conclusions
A peroxidase that degrades lignin at very acidic pH could be obtained by engineering an exposed catalytic site, able to oxidize the bulky and recalcitrant lignin polymers, in a different peroxidase type selected because of its high stability at acidic pH. The potential of this type of engineered peroxidases as industrial biocatalysts in lignocellulose biorefineries is strongly enhanced by the possibility to perform the delignification (or lignin modification) reactions under extremely acidic pH conditions (below pH 2), resulting in enhanced oxidative power of the enzymes.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón