Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2015 ] Poraj-Kobielska M, Peter S, Leonhardt S, Ullrich R, Scheibner K, Hofrichter M Immobilization of unspecific peroxygenases (EC 1.11.2.1) in PVA/PEG gel and hollow fiber modules Biochem. Eng. J., 98: 144-150
[ 2015 ] Rico A, Rencoret J, del Río JC, Martínez AT, Gutiérrez A In-Depth 2D NMR Study of Lignin Modification During Pretreatment of Eucalyptus Wood with Laccase and Mediators Bioenerg. Res., 8: 211-230
[ 2015 ] Saez-Jimenez V, Acebes S, Guallar V, Martínez AT, Ruiz-Dueñas FJ Improving the oxidative stability of a high redox potential fungal peroxidase by rational design PlosOne, 10-4
[ 2015 ] Saez-Jimenez V, Baratto MC, Pogni R, Rencoret J, Gutiérrez A, Santos JI, Martínez AT, Ruiz-Dueñas FJ Demonstration of Lignin-to-Peroxidase Direct Electron Transfer: A Transient-state Kinetics, Directed Mutagenesis, EPR and NMR Study J. Biol. Chem., 290: 23201-23213
[ 2015 ] Saez-Jimenez V, Fernandez-Fueyo E, Medrano FJ, Romero A, Martínez AT, Ruiz-Dueñas FJ Improving the pH-stability of Versatile Peroxidase by Comparative Structural Analysis with a Naturally-Stable Manganese Peroxidase PlosOne, doi: 10.1371/journal.pone.0140984
[ 2015 ] Tan TC, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, Divine C Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation Nat. Commun., 6: 7542
year2014
Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae
González-Pérez D, Alcalde M
Bioengineered, 5: 254-263

The ligninolytic enzymatic consortium produced by white-rot fungi is one of the most efficient oxidative systems found in nature, with many potential applications that range from the production of 2nd generation biofuels to chemicals synthesis. In the current study, two high redox potential oxidoreductase fusion genes (laccase -Lac- and versatile peroxidase -Vp-) that had been evolved in the laboratory were re-assembled in Saccharomyces cerevisiae. First, cell viability and secretion were assessed after co-transforming the Lac and Vp genes into yeast. Several expression cassettes were inserted in vivo into episomal bi-directional vectors in order to evaluate inducible promoter and/or terminator pairs of different strengths in an individual and combined manner. The synthetic white-rot yeast model harboring Vp(GAL1/CYC1)-Lac(GAL10/ADH1) displayed up to 1000 and 100 Units per L of peroxidase and laccase activity, respectively, representing a suitable point of departure for future synthetic biology studies.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón