Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2014 ] Fernandez-Fueyo E, Castanera ER, Ruiz-Dueñas FJ, López-Lucendo MF, Ramírez L, Pisabarro AG, Martínez AT Ligninolytic peroxidase gene expression by Pleurotus ostreatus: Differential regulation in lignocellulose medium and effect of temperature and pH Fungal Gen. Biol., doi: 10.1016/j.fgb.2014.02.003
[ 2014 ] Fernandez-Fueyo E, Ruiz-Dueñas FJ, Martínez AT Engineering a fungal peroxidase that degrades lignin at very acidic pH Biotechnol. Biofuels, 7: 114
[ 2014 ] Fernandez-Fueyo E, Ruiz-Dueñas FJ, Martínez MJ, Romero A, Hammel KE, Medrano FJ, Martínez AT Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability Biotechnol. Biofuels, 7: 2
[ 2014 ] García-Ruiz E, Maté D, González-Pérez D, Molina-Espeja P, Camarero S, Martínez AT, Ballesteros A, Alcalde M Directed evolution of ligninolytic oxidoreductases: from functional expression to stabilization and beyond In "Cascade Biocatalysis. Integrating Stereoselective and Environmentally Friendly Reactions", First Edition. Edited by Sergio Riva and Wolf-Dieter Fessner. Wiley-VCH Verlag GmbH & Co
[ 2014 ] González-Pérez D, Alcalde M Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae Bioengineered, 5: 254-263
[ 2014 ] González-Pérez D, García-Ruiz E, Ruiz-Dueñas FJ, Martínez AT, Alcalde M Structural determinants of oxidative stabilization in an evolved versatile peroxidase ACS-Catalysis, 4: 3891-3901
year2014
Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae
González-Pérez D, Alcalde M
Bioengineered, 5: 254-263

The ligninolytic enzymatic consortium produced by white-rot fungi is one of the most efficient oxidative systems found in nature, with many potential applications that range from the production of 2nd generation biofuels to chemicals synthesis. In the current study, two high redox potential oxidoreductase fusion genes (laccase -Lac- and versatile peroxidase -Vp-) that had been evolved in the laboratory were re-assembled in Saccharomyces cerevisiae. First, cell viability and secretion were assessed after co-transforming the Lac and Vp genes into yeast. Several expression cassettes were inserted in vivo into episomal bi-directional vectors in order to evaluate inducible promoter and/or terminator pairs of different strengths in an individual and combined manner. The synthetic white-rot yeast model harboring Vp(GAL1/CYC1)-Lac(GAL10/ADH1) displayed up to 1000 and 100 Units per L of peroxidase and laccase activity, respectively, representing a suitable point of departure for future synthetic biology studies.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón