Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2014 ] Pita M, Maté D, González-Pérez D, Shleev S, Fernández VM, Alcalde M, De Lacey AL Bioelectrochemical Oxidation of Water J. Am. Chem. Soc., 136: 5892-5895
[ 2014 ] Piumi F, Levasseur A, Navarro D, Zhou S, Macellaro G, Mathieu Y, Ropartz D, Ludwig R, Faulds CB, Record E A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme. Appl. Microbiol. Biotechnol., 98: 10105-10118
[ 2014 ] Rico A, Rencoret J, del Río JC, Martínez AT, Gutiérrez A Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock Biotechnol. Biofuels, 7: 6
[ 2013 ] Babot ED, del Río JC, Kalum L, Martínez AT, Gutiérrez A Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea Biotechnol. Bioeng., 110: 2323-2332
[ 2013 ] Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM, Berrin JG, Sigoillot JC Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina Appl. Environ. Microbiol., 79: 488-496
[ 2013 ] Carabajal M, Kellner H, Levin L, Jehmlich N, Hofrichter M, Ullrich R The secretome of Trametes versicolor grown on tomato juice medium and purification of the secreted oxidoreductases including a versatile peroxidase J. Biotech., 168: 15-23
year2014
A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme.
Piumi F, Levasseur A, Navarro D, Zhou S, Macellaro G, Mathieu Y, Ropartz D, Ludwig R, Faulds CB, Record E
Appl. Microbiol. Biotechnol., 98: 10105-10118

Data on glucose dehydrogenases (GDHs) are scarce and availability of these enzymes for application purposes is limited. This paper describes a new GDH from the fungus Pycnoporus cinnabarinus CIRM BRFM 137 that is the first reported GDH from a white-rot fungus belonging to the Basidiomycota. The enzyme was recombinantly produced in Aspergillus niger, a well-known fungal host producing an array of homologous or heterologous enzymes for industrial applications. The full-length gene that encodes GDH from P. cinnabarinus (PcGDH) consists of 2,425bp and codes for a deduced protein of 620 amino acids with a calculated molecular mass of 62.5kDa. The corresponding complementary DNA was cloned and placed under the control of the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter. The signal peptide of the glucoamylase prepro sequence of A. niger was used to target PcGDH secretion into the culture medium, achieving a yield of 640mgL(-1), which is tenfold higher than any other reported value. The recombinant PcGDH was purified twofold to homogeneity in a one-step procedure with a 41% recovery using a Ni Sepharose column. The identity of the recombinant protein was further confirmed by immunodetection using western blot analysis and N-terminal sequencing. The molecular mass of the native PcGDH was 130kDa, suggesting a homodimeric form. Optimal pH and temperature were found to be similar (5.5 and 60°C, respectively) to those determined for the previously characterized GDH, i.e., from Glomerella cingulata. However PcGDH exhibits a lower catalytic efficiency of 67M(-1)s(-1) toward glucose. This substrate is by far the preferred substrate, which constitutes an advantage over other sugar oxidases in the case of blood glucose monitoring. The substrate-binding domain of PcGDH turns out to be conserved as compared to other glucose-methanol-choline (GMCs) oxidoreductases. In addition, the ability of PcGDH to reduce oxidized quinones or radical intermediates was clearly demonstrated, which raises prospects for applying this enzyme to detoxify toxic compounds formed during the degradation of lignin.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón