Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2016 ] van Kuijk SJA, del Río JC, Rencoret J, Gutiérrez A, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability J. Anim. Sci. Biotechnol., 7: 55
[ 2016 ] Viña-Gonzalez J, González-Pérez D, Alcalde M Directed evolution method in Saccharomyces cerevisiae: Mutant library creation and screening J. Vis. Exp., doi: 10.3791/53761
[ 2015 ] Alcalde M Engineering the ligninolytic enzyme consortium Trends Biotechnol., 33: 155-162
[ 2015 ] Babot ED, del Río JC, Cañellas M, Sancho F, Lucas F, Guallar V, Kalum L, Lund H, Gröbe G, Scheibner K, Ullrich R, Hofrichter M, Martínez AT, Gutiérrez A Steroid hydroxylation by basidiomycete peroxygenases: A combined experimental and computational study Appl. Environ. Microbiol., doi: 10.1128/AEM.00660-15
[ 2015 ] Babot ED, del Río JC, Kalum L, Martínez AT, Gutiérrez A Regioselective Hydroxylation in the Production of 25-Hydroxyvitamin D by Coprinopsis cinerea Peroxygenase ChemCatChem, 7: 283-290
[ 2015 ] Baratto MC, Sinicropi A, Linde D, Saez-Jimenez V, Sorace L, Ruiz-Dueñas FJ, Martínez AT, Basosi R, Pogni R Redox-Active Sites in Auricularia auricula-judae Dye-Decolorizing Peroxidase and Several Directed Variants: A Multifrequency EPR Study J. Phys. Chem. B, 119: 13583-13592
year2015
Engineering the ligninolytic enzyme consortium
Alcalde M
Trends Biotechnol., 33: 155-162

The ligninolytic enzyme consortium is one of the most-efficient oxidative systems found in nature, playing a pivotal role during wood decay and coal formation. Typically formed by high redox-potential oxidoreductases, this array of enzymes can be used within the emerging lignocellulose biorefineries in processes that range from the production of bioenergy to that of biomaterials. To ensure that these versatile enzymes meet industry standards and needs, they have been subjected to directed evolution and hybrid approaches that surpass the limits imposed by nature. This Opinion article analyzes recent achievements in this field, including the incipient groundbreaking research into the evolution of resurrected enzymes, and the engineering of ligninolytic secretomes to create consolidated bioprocessing microbes with synthetic biology applications.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón