Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2015 ] Monza E, Lucas F, Camarero S, Alejaldre LC, Martínez AT, Guallar V Insights into Laccase Engineering from Molecular Simulations: Toward a Binding-Focused Strategy J. Phys. Chem. Lett., 6: 1447-1453
[ 2015 ] Ni Y, Fernandez-Fueyo E, Baraibar AG, Ullrich R, Hofrichter M, Yanase H, Alcalde M, van Berkel WJ, Hollmann F Peroxygenase-Catalyzed Oxyfunctionalization Reactions Promoted by the Complete Oxidation of Methanol Angew. Chem. Int. Ed., doi: 10.1002/anie.201507881
[ 2015 ] Pardo I, Camarero S Laccase engineering by rational and evolutionary design Cell Mol. Life Sci., doi: 10.1007/s00018-014-1824-8
[ 2015 ] Pardo I, Camarero S Exploring the Oxidation of Lignin-Derived Phenols by a Library of Laccase Mutants Molecules, 20: 15929-15943
[ 2015 ] Pezzella C, Guarino L, Piscitelli A How to enjoy laccases Cell Mol. Life Sci., 72: 923-940
[ 2015 ] Pham NH, Hollmann F, Kracher D, Preims M, Haltrich D, Ludwig R Engineering an enzymatic regeneration system for NAD(P)H oxidation J. Mol. Cat. B, 120: 38-46
year2015
Immobilization of unspecific peroxygenases (EC 1.11.2.1) in PVA/PEG gel and hollow fiber modules
Poraj-Kobielska M, Peter S, Leonhardt S, Ullrich R, Scheibner K, Hofrichter M
Biochem. Eng. J., 98: 144-150

The immobilization of enzymes has many advantages, such as higher stability, easier handling, and reuse of the catalyst. Here we report, for the first time, two effective methods for the immobilization of unspecific peroxygenase (UPO; EC 1.11.2.1). This biocatalyst type comprises heavily glycosylated heme-thiolate proteins that catalyze various biotechnologically relevant oxyfunctionalizations. Both the encapsulation in cryogel and the retention of the enzyme in hollow fiber modules were found to be efficient methods for their immobilization. After encapsulation, the enzyme still exhibited 60% of its initial activity. Interestingly, we did not find differences in the kinetic parameters of free and immobilized UPOs. In long-term experiments, the conversion of the pharmaceutical diclofenac with immobilized UPOs in different reactor types yielded between 62 mg and 154 mg of the major human drug metabolite 4′-hydroxydiclofenac. The maximal total turnover number was about 60-fold higher compared to the free enzyme. A test over 5 months showed that storage of encapsulated UPOs in non-polar solvents (e.g., cyclohexane) helps to preserve the enzyme stability and increases their relative activity (by about ∼150%, in the case of diclofenac hydroxylation). In addition to the hydrophilic substrate diclofenac, encapsulated UPOs also oxidized the hydrophobic model compound cyclohexane.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón