Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2016 ] van Kuijk SJA, del Río JC, Rencoret J, Gutiérrez A, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability J. Anim. Sci. Biotechnol., 7: 55
[ 2016 ] Viña-Gonzalez J, González-Pérez D, Alcalde M Directed evolution method in Saccharomyces cerevisiae: Mutant library creation and screening J. Vis. Exp., doi: 10.3791/53761
[ 2015 ] Alcalde M Engineering the ligninolytic enzyme consortium Trends Biotechnol., 33: 155-162
[ 2015 ] Babot ED, del Río JC, Cañellas M, Sancho F, Lucas F, Guallar V, Kalum L, Lund H, Gröbe G, Scheibner K, Ullrich R, Hofrichter M, Martínez AT, Gutiérrez A Steroid hydroxylation by basidiomycete peroxygenases: A combined experimental and computational study Appl. Environ. Microbiol., doi: 10.1128/AEM.00660-15
[ 2015 ] Babot ED, del Río JC, Kalum L, Martínez AT, Gutiérrez A Regioselective Hydroxylation in the Production of 25-Hydroxyvitamin D by Coprinopsis cinerea Peroxygenase ChemCatChem, 7: 283-290
[ 2015 ] Baratto MC, Sinicropi A, Linde D, Saez-Jimenez V, Sorace L, Ruiz-Dueñas FJ, Martínez AT, Basosi R, Pogni R Redox-Active Sites in Auricularia auricula-judae Dye-Decolorizing Peroxidase and Several Directed Variants: A Multifrequency EPR Study J. Phys. Chem. B, 119: 13583-13592
year2015
Fungal unspecific peroxygenases: heme-thiolate proteins that combine peroxidase and cytochrome p450 properties
Hofrichter M, Kellner H, Pecyna MJ, Ullrich R
Adv. Exp. Med. Biol., 851: 341-368

Eleven years ago, a secreted heme-thiolate peroxidase with promiscuity for oxygen transfer reactions was discovered in the basidiomycetous fungus, Agrocybe aegerita. The enzyme turned out to be a functional mono-peroxygenase that transferred an oxygen atom from hydrogen peroxide to diverse organic substrates (aromatics, heterocycles, linear and cyclic alkanes/alkenes, fatty acids, etc.). Later similar enzymes were found in other mushroom genera such as Coprinellus and Marasmius. Approximately one thousand putative peroxygenase sequences that form two large clusters can be found in genetic databases and fungal genomes, indicating the widespread occurrence of such enzymes in the whole fungal kingdom including all phyla of true fungi (Eumycota) and certain fungus-like heterokonts (Oomycota). This new enzyme type was classified as unspecific peroxygenase (UPO, EC 1.11.2.1) and placed in a separate peroxidase subclass. Furthermore, UPOs and related heme-thiolate peroxidases such as well-studied chloroperoxidase (CPO) represent a separate superfamily of heme proteins on the phylogenetic level. The reactions catalyzed by UPOs include hydroxylation, epoxidation, O- and N-dealkylation, aromatization, sulfoxidation, N-oxygenation, dechlorination and halide oxidation. In many cases, the product patterns of UPOs resemble those of human cytochrome P450 (P450) monooxygenases and, in fact, combine the catalytic cycle of heme peroxidases with the “peroxide shunt” of P450s. Here, an overview on UPOs is provided with focus on their molecular and catalytic properties.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón