Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2016 ] Ewing TA, Gygli G, van Berkel WJ A single loop is essential for the octamerisation of vanillyl alcohol oxidase FEBS J., doi: 10.1111/febs.13762
[ 2016 ] Fernandez-Fueyo E, Ni Y, Gomez Baraibar A, Alcalde M, van Langen LM, Hollmann F Towards preparative peroxygenase-catalyzed oxyfunctionalization reactions in organic media J. Mol. Cat. B, doi: 10.1016/j.molcatb.2016.09.013
[ 2016 ] Fernandez-Fueyo E, Ruiz-Dueñas FJ, López-Lucendo MF, Pérez-Boada M, Rencoret J, Gutiérrez A, Pisabarro AG, Ramírez L, Martínez AT A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus Biotechnol. Biofuels, 9: 49
[ 2016 ] Fernandez-Fueyo E, Younes SHH, van Rootselaar S, Aben RWM, Renirie R, Wever R, Holtmann D, Rutjes FPJT, Hollmann F A Biocatalytic Aza-Achmatowicz Reaction ACS-Catalysis, 6: 5904-5907
[ 2016 ] Garajova S, Mathieu Y, Beccia MR, Bennati-Granier C, Biaso F, Fanuel M, Ropartz D, Guigliarelli B, Record E, Rogniaux H, Henrissat B, Berrin JG Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose Sci. Rep., 6: 28276
[ 2016 ] González-Pérez D, Mateljak I, García-Ruiz E, Ruiz-Dueñas FJ, Martínez AT, Alcalde M Alkaline versatile peroxidase by directed evolution Catal. Sci. Technol., 6: 6625-6636
year2016
A single loop is essential for the octamerisation of vanillyl alcohol oxidase
Ewing TA, Gygli G, van Berkel WJ
FEBS J., doi: 10.1111/febs.13762

The VAO/PCMH family of flavoenzymes is a family of structurally related proteins that catalyse a wide range of oxidation reactions. It contains a subfamily of enzymes that catalyse the oxidation of para-substituted phenols using covalently bound FAD cofactors (the 4PO subfamily). This subfamily is composed of two oxidases, vanillyl alcohol oxidase (VAO) and eugenol oxidase (EUGO), and two flavocytochrome dehydrogenases, para-cresol methylhydroxylase (PCMH) and eugenol hydroxylase (EUGH). Although they catalyse similar reactions, these enzymes differ in terms of their electron acceptor preference and oligomerisation state. For example, VAO forms homo-octamers that can be described as tetramers of stable dimers, whereas EUGO is exclusively dimeric in solution. A possible explanation for this difference is the presence of a loop at the dimer-dimer interface in VAO that is not present in EUGO. Here, the role played by this loop in determining the quaternary structure of these enzymes is investigated. A VAO variant where the loop was deleted, loopless VAO, exclusively formed dimers. However, introduction of the loop into EUGO was not sufficient to induce its octamerisation. Neither variant displayed major changes in its catalytic properties as compared to the wild type enzyme. Bioinformatic analysis revealed that the presence of the loop is conserved within putative fungal oxidases of the 4PO subgroup, but it is never found in putative bacterial oxidases or dehydrogenases. Our results shed light on the molecular mechanism of homo-oligomerisation of VAO and the importance of oligomerisation for its enzymatic function. This article is protected by copyright. All rights reserved.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón