Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2017 ] Alcalde M When directed evolution met ancestral enzyme resurrection Microbial Biotechnol., 10: 22-24
[ 2017 ] Ayuso-Fernández I, Martínez AT, Ruiz-Dueñas FJ Experimental recreation of the evolution of lignin-degrading enzymes from the Jurassic to date Biotechnol. Biofuels, 10: 67
[ 2017 ] Carro J, Martínez A, Medina M, Martínez AT, Ferreira P Protein dynamics promote hydride tunnelling in substrate oxidation by aryl-alcohol oxidase Phys. Chem. Chem. Phys., 19: 28666-28675
[ 2017 ] González-Pérez D, Alcalde M The making of versatile peroxidase by directed evolution Biocatalysis and Biotransformation, doi: 10.1080/10242422.2017.1363190
[ 2017 ] Gygli G, Lucas F, Guallar V, van Berkel WJ The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths PLoS Comput. Biol., 13
[ 2017 ] Martínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, Herold-Majumdar OM, Hofrichter M, Liers C, Ullrich R, Scheibner K, Sannia G, Piscitelli A, Sener ME, Kılıç S, van Berkel WJ, Guallar V, et al. Oxidoreductases on their way to industrial biotransformations Biotechnol. Adv., 35: 815-831
year2016
Extracellular electron transfer systems fuel cellulose oxidative degradation
Kracher D, Scheiblbrandner S, Felice AKG, Breslmayr E, Preims M, Ludwicka K, Haltrich D, Eijsink VG, Ludwig R
Science, 352: 1098-1101

Ninety percent of lignocellulose-degrading fungi contain genes encoding lytic polysaccharide monooxygenases (LPMOs). These enzymes catalyze the initial oxidative cleavage of recalcitrant polysaccharides after activation by an electron donor. Understanding the source of electrons is fundamental to fungal physiology and will also help exploit LPMOs for biomass processing. Using genome data and biochemical methods, we characterized and compared different extracellular electron sources for LPMO: cellobiose dehydrogenase, phenols procured from plant biomass or produced by fungi, and GMC oxidoreductases that regenerate LPMO-reducing diphenols. These data demonstrate that all three electron transfer systems are functional and that their relative importance during cellulose degradation depends on fungal lifestyle. The availability of extracellular electron donors is obligatory to activate fungal oxidative attack on polysaccharides.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón