Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2016 ] Kellner H, Pecyna MJ, Buchhaupt M, Ullrich R, Hofrichter M Draft Genome Sequence of the Chloroperoxidase-Producing Fungus Caldariomyces fumago Woronichin DSM1256 Genome Announc., 4
[ 2016 ] Kracher D, Scheiblbrandner S, Felice AKG, Breslmayr E, Preims M, Ludwicka K, Haltrich D, Eijsink VG, Ludwig R Extracellular electron transfer systems fuel cellulose oxidative degradation Science, 352: 1098-1101
[ 2016 ] Linde D, Cañellas M, Coscolín C, Davó-Siguero I, Romero A, Lucas F, Ruiz-Dueñas FJ, Guallar V, Martínez AT Asymmetric sulfoxidation by engineering the heme pocket of a dye-decolorizing peroxidase: An experimental and computational study Catal. Sci. Technol., 6: 6277-6285
[ 2016 ] Lourenço A, Rencoret J, Chemetova C, Gominho J, Gutiérrez A, del Río JC, Pereira H Lignin Composition and Structure Differs between Xylem, Phloem and Phellem in Quercus suber L. Front. Plant Sci., 7: 1612
[ 2016 ] Lucas F, Babot ED, Cañellas M, del Río JC, Kalum L, Ullrich R, Hofrichter M, Guallar V, Martínez AT, Gutiérrez A Molecular determinants for selective C25-hydroxylation of vitamins D2 and D3 by fungal peroxygenases Catal. Sci. Technol., 6: 288-295
[ 2016 ] Martínez AT How to break down crystalline cellulose Science, 352: 1050-1051
year2016
How to break down crystalline cellulose
Martínez AT
Science, 352: 1050-1051

Biomass-degrading microorganisms use lytic polysaccharide monooxygenase (LPMO) enzymes to help digest cellulose, chitin, and starch. By cleaving otherwise inaccessible crystalline cellulose chains, these enzymes provide access to hydrolytic enzymes. LPMOs are of interest to biotechnology because efficient depolymerization of cellulose is a major bottleneck for the production of biologically based chemicals and fuels. On page 1098 of this issue, Kracher et al. (1) compare LPMO-reducing substrates in fungi from different taxonomic groups and lifestyles, based on both biochemical and genomic evidence. The results provide insights into reductive activation of LPMO that are important for developing more efficient industrial enzymes for lignocellulose biorefineries.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón