Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2016 ] Maté D, Alcalde M Laccase: a multi-purpose biocatalyst at the forefront of biotechnology Microbial Biotechnol., doi: 10.1111/1751-7915.12422
[ 2016 ] Mathieu Y, Piumi F, Valli R, Carro J, Ferreira P, Faulds CB, Record E Activities of Secreted Aryl Alcohol Quinone Oxidoreductases from Pycnoporus cinnabarinus Provide Insights into Fungal Degradation of Plant Biomass Appl. Environ. Microbiol., 82: 2411-2423
[ 2016 ] Molina-Espeja P, Cañellas M, Plou FJ, Hofrichter M, Lucas F, Guallar V, Alcalde M Synthesis of 1-Naphthol by a Natural Peroxygenase engineered by Directed Evolution ChemBioChem, 17: 341-349
[ 2016 ] Molina-Espeja P, Viña-Gonzalez J, Gomez-Fernandez BJ, Martin-Diaz J, García-Ruiz E, Alcalde M Beyond the outer limits of nature by directed evolution Biotechnol. Adv., 34: 754-767
[ 2016 ] Ni Y, Fernandez-Fueyo E, Gomez Baraibar A, Ullrich R, Hofrichter M, Yanase H, Alcalde M, van Berkel WJ, Hollmann F Peroxygenase-Catalyzed Oxyfunctionalization Reactions Promoted by the Complete Oxidation of Methanol Angew. Chem. Int. Ed., 55: 798-801
[ 2016 ] Olmedo A, Aranda C, del Río JC, Kiebist J, Scheibner K, Martínez AT, Gutiérrez A From Alkanes to Carboxylic Acids: Terminal Oxygenation by a Fungal Peroxygenase Angew. Chem. Int. Ed., 55: 12248-12251
year2016
Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability
van Kuijk SJA, del Río JC, Rencoret J, Gutiérrez A, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW
J. Anim. Sci. Biotechnol., 7: 55

Background

The present work investigated the influence of lignin content and composition in the fungal treatment of lignocellulosic biomass in order to improve rumen degradability. Wheat straw and wood chips, differing in lignin composition, were treated with Lentinula edodes for 0, 2, 4, 8 and 12 wk and the changes occurring during fungal degradation were analyzed using pyrolysis-gas chromatography-mass spectrometry and detergent fiber analysis.

Results

L. edodes preferentially degraded lignin, with only limited cellulose degradation, in wheat straw and wood chips, leaving a substrate enriched in cellulose. Syringyl (S)-lignin units were preferentially degraded than guaiacyl (G)-lignin units, resulting in a decreased S/G ratio. A decreasing S/G ratio (wheat straw: r = −0.72, wood chips: r = −0.75) and selective lignin degradation (wheat straw: r = −0.69, wood chips: r = −0.88) were correlated with in vitro gas production (IVGP), a good indicator for rumen degradability.

Conclusions

L. edodes treatment increased the IVGP of wheat straw and wood chips. Effects on IVGP were similar for wheat straw and wood chips indicating that lignin content and 3D-structure of cell walls influence in vitrorumen degradability more than lignin composition.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón