Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2016 ] Ewing TA, Gygli G, van Berkel WJ A single loop is essential for the octamerisation of vanillyl alcohol oxidase FEBS J., doi: 10.1111/febs.13762
[ 2016 ] Fernandez-Fueyo E, Ni Y, Gomez Baraibar A, Alcalde M, van Langen LM, Hollmann F Towards preparative peroxygenase-catalyzed oxyfunctionalization reactions in organic media J. Mol. Cat. B, doi: 10.1016/j.molcatb.2016.09.013
[ 2016 ] Fernandez-Fueyo E, Ruiz-Dueñas FJ, López-Lucendo MF, Pérez-Boada M, Rencoret J, Gutiérrez A, Pisabarro AG, Ramírez L, Martínez AT A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus Biotechnol. Biofuels, 9: 49
[ 2016 ] Fernandez-Fueyo E, Younes SHH, van Rootselaar S, Aben RWM, Renirie R, Wever R, Holtmann D, Rutjes FPJT, Hollmann F A Biocatalytic Aza-Achmatowicz Reaction ACS-Catalysis, 6: 5904-5907
[ 2016 ] Garajova S, Mathieu Y, Beccia MR, Bennati-Granier C, Biaso F, Fanuel M, Ropartz D, Guigliarelli B, Record E, Rogniaux H, Henrissat B, Berrin JG Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose Sci. Rep., 6: 28276
[ 2016 ] González-Pérez D, Mateljak I, García-Ruiz E, Ruiz-Dueñas FJ, Martínez AT, Alcalde M Alkaline versatile peroxidase by directed evolution Catal. Sci. Technol., 6: 6625-6636
year2016
Beyond the outer limits of nature by directed evolution
Molina-Espeja P, Viña-Gonzalez J, Gomez-Fernandez BJ, Martin-Diaz J, García-Ruiz E, Alcalde M
Biotechnol. Adv., 34: 754-767

For more than thirty years, biotechnology has borne witness to the power of directed evolution in designing molecules of industrial relevance. While scientists all over the world discuss the future of molecular evolution, dozens of laboratory-designed products are being released with improved characteristics in terms of turnover rates, substrate scope, catalytic promiscuity or stability. In this review we aim to present the most recent advances in this fascinating research field that are allowing us to surpass the limits of nature and apply newly gained attributes to a range of applications, from gene therapy to novel green processes. The use of directed evolution in non-natural environments, the generation of catalytic promiscuity for non-natural reactions, the insertion of unnatural amino acids into proteins or the creation of unnatural DNA, is described comprehensively, together with the potential applications in bioremediation, biomedicine and in the generation of new bionanomaterials. These successful case studies show us that the limits of directed evolution will be defined by our own imagination, and in some cases, stretching beyond that.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón