Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2017 ] Alcalde M When directed evolution met ancestral enzyme resurrection Microbial Biotechnol., 10: 22-24
[ 2017 ] Ayuso-Fernández I, Martínez AT, Ruiz-Dueñas FJ Experimental recreation of the evolution of lignin-degrading enzymes from the Jurassic to date Biotechnol. Biofuels, 10: 67
[ 2017 ] Carro J, Martínez A, Medina M, Martínez AT, Ferreira P Protein dynamics promote hydride tunnelling in substrate oxidation by aryl-alcohol oxidase Phys. Chem. Chem. Phys., 19: 28666-28675
[ 2017 ] González-Pérez D, Alcalde M The making of versatile peroxidase by directed evolution Biocatalysis and Biotransformation, doi: 10.1080/10242422.2017.1363190
[ 2017 ] Gygli G, Lucas F, Guallar V, van Berkel WJ The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths PLoS Comput. Biol., 13
[ 2017 ] Martínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, Herold-Majumdar OM, Hofrichter M, Liers C, Ullrich R, Scheibner K, Sannia G, Piscitelli A, Sener ME, Kılıç S, van Berkel WJ, Guallar V, et al. Oxidoreductases on their way to industrial biotransformations Biotechnol. Adv., 35: 815-831
year2016
Lignin–carbohydrate complexes from sisal (Agave sisalana) and abaca (Musa textilis): chemical composition and structural modifications during the isolation process
del Río JC, Prinsen P, Cadena EM, Martínez AT, Gutiérrez A, Rencoret J
Planta, 243: 1143-1158

Two types of lignins occurred in different lignin–carbohydrate fractions, a lignin enriched in syringyl units, less condensed, preferentially associated with xylans, and a lignin with more guaiacyl units, more condensed, associated with glucans.

Lignin–carbohydrate complexes (LCC) were isolated from the fibers of sisal (Agave sisalana) and abaca (Musa textilis) according to a plant biomass fractionation procedure recently developed and which was termed as “universally” applicable to any type of lignocellulosic material. Two LCC fractions, namely glucan–lignin (GL) and xylan–lignin (XL), were isolated and differed in the content and composition of carbohydrates and lignin. In both cases, GL fractions were enriched in glucans and comparatively depleted in lignin, whereas XL fractions were depleted in glucans, but enriched in xylans and lignin. Analysis by two-dimensional Nuclear Magnetic Resonance (2D-NMR) and Derivatization Followed by Reductive Cleavage (DFRC) indicated that the XL fractions were enriched in syringyl (S)-lignin units and β-O-4′ alkyl-aryl ether linkages, whereas GL fractions have more guaiacyl (G)-lignin units and less β-O-4′ alkyl-aryl ether linkages per lignin unit. The data suggest that the structural characteristics of the lignin polymers are not homogeneously distributed within the same plant and that two different lignin polymers with different composition and structure might be present. The analyses also suggested that acetates from hemicelluloses and the acyl groups (acetates and p-coumarates) attached to the γ-OH of the lignin side chains were extensively hydrolyzed and removed during the LCC fractionation process. Therefore, caution must be paid when using this fractionation approach for the structural characterization of plants with acylated hemicelluloses and lignins. Finally, several chemical linkages (phenylglycosides and benzyl ethers) could be observed to occur between lignin and xylans in these plants.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón