Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2019 ] Linde D, Ayuso-Fernández I, Ruiz-Dueñas FJ, Martínez AT Different fungal peroxidases oxidize nitrophenols at a surface catalytic tryptophan Arch. Biochem. Biophys., 668: 23-28
[ 2019 ] Serrano A, Sancho F, Viña-Gonzalez J, Carro J, Alcalde M, Guallar V, Martínez AT Switching the substrate preference of fungal aryl-alcohol oxidase: towards stereoselective oxidation of secondary benzyl alcohols Catal. Sci. Technol., doi: 10.1039/C8CY02447B
[ 2019 ] Viña-Gonzalez J, Jimenez-Lalana D, Sancho F, Serrano A, Martínez AT, Guallar V, Alcalde M Structure‐Guided Evolution of Aryl Alcohol Oxidase from Pleurotus eryngii for the Selective Oxidation of Secondary Benzyl Alcohols Adv. Synth. Catal., 361: 2514-2525
[ 2018 ] Carro J, Fernandez-Fueyo E, Fernández-Alonso C, Cañada J, Ullrich R, Hofrichter M, Alcalde M, Ferreira P, Martínez AT Self-sustained enzymatic cascade for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural Biotechnol. Biofuels, 11: 86-96
[ 2018 ] Carro J, Ferreira P, Martínez AT, Gadda G Stepwise Hydrogen Atom and Proton Transfers in Dioxygen Reduction by Aryl-Alcohol Oxidase Biochemistry, doi: 10.1021/acs.biochem.8b00106
[ 2018 ] Ewing TA, Kühn J, Segarra S, Tortajada M, Zuhse R, van Berkel WJ Multigram Scale Enzymatic Synthesis of (R)‐1‐(4′‐Hydroxyphenyl)ethanol Using Vanillyl Alcohol Oxidase Adv. Synth. Catal., 360: 2370-2376
year2018
Biological Lignin Degradation
Martínez AT, Camarero S, Ruiz-Dueñas FJ, Martínez MJ
Lignin Valorization: Emerging Approaches. Ed. Gregg Beckham. RSC: 199-225

In nature, white-rot fungi and some bacteria secrete powerful oxidative enzymes such as peroxidases and laccases to break down lignin and lignin products. These enzymes, together with different chemical mediators, form a chemo-enzymatic system for delignifying biomass so that the microbes can gain access to the polysaccharides. Ligninolytic oxidoreductases have been widely studied in terms of their unique reaction mechanisms and industrial applicability (largely related to production and stability issues). In the context of an integrated biorefinery, both ligninolytic organisms and ligninolytic enzymes may have a role to play for delignification and lignin valorization. This chapter reviews microbial degradation of lignin from an enzymatic perspective, discusses the recent discoveries and advances in a global context including genomic and structure/function information, and provides a perspective on the potential for its utilization in different green chemistry transformations.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón