Optimized oxidoreductases for medium and large scale industrial biotransformations
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
Private area


Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2014 ] Fernandez-Fueyo E, Castanera ER, Ruiz-Dueñas FJ, López-Lucendo MF, Ramírez L, Pisabarro AG, Martínez AT Ligninolytic peroxidase gene expression by Pleurotus ostreatus: Differential regulation in lignocellulose medium and effect of temperature and pH Fungal Gen. Biol., doi: 10.1016/j.fgb.2014.02.003
[ 2014 ] Fernandez-Fueyo E, Ruiz-Dueñas FJ, Martínez AT Engineering a fungal peroxidase that degrades lignin at very acidic pH Biotechnol. Biofuels, 7: 114
[ 2014 ] Fernandez-Fueyo E, Ruiz-Dueñas FJ, Martínez MJ, Romero A, Hammel KE, Medrano FJ, Martínez AT Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability Biotechnol. Biofuels, 7: 2
[ 2014 ] García-Ruiz E, Maté D, González-Pérez D, Molina-Espeja P, Camarero S, Martínez AT, Ballesteros A, Alcalde M Directed evolution of ligninolytic oxidoreductases: from functional expression to stabilization and beyond In "Cascade Biocatalysis. Integrating Stereoselective and Environmentally Friendly Reactions", First Edition. Edited by Sergio Riva and Wolf-Dieter Fessner. Wiley-VCH Verlag GmbH & Co
[ 2014 ] González-Pérez D, Alcalde M Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae Bioengineered, 5: 254-263
[ 2014 ] González-Pérez D, García-Ruiz E, Ruiz-Dueñas FJ, Martínez AT, Alcalde M Structural determinants of oxidative stabilization in an evolved versatile peroxidase ACS-Catalysis, 4: 3891-3901
Different fungal peroxidases oxidize nitrophenols at a surface catalytic tryptophan
Linde D, Ayuso-Fernández I, Ruiz-Dueñas FJ, Martínez AT
Arch. Biochem. Biophys., 668: 23-28

Dye-decolorizing peroxidase (DyP) from Auricularia auricula-judae and versatile peroxidase (VP) from Pleurotus eryngii oxidize the three mononitrophenol isomers. Both enzymes have been overexpressed in Escherichia coli and in vitro activated. Despite their very different three-dimensional structures, the nitrophenol oxidation site is located at a solvent-exposed aromatic residue in both DyP (Trp377) and VP (Trp164), as revealed by liquid chromatography coupled to mass spectrometry and kinetic analyses of nitrophenol oxidation by the native enzymes and their tryptophan-less variants (the latter showing 10–60 fold lower catalytic efficiencies).

Download the article for free until July 5th on: https://authors.elsevier.com/a/1Z3YPw0NEPWp

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón