Optimized oxidoreductases for medium and large scale industrial biotransformations
Total records:
126
Pages:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
[ 2014 ]
Fernandez-Fueyo E, Castanera ER, Ruiz-Dueñas FJ, López-Lucendo MF, Ramírez L, Pisabarro AG, Martínez AT Ligninolytic peroxidase gene expression by Pleurotus ostreatus: Differential regulation in lignocellulose medium and effect of temperature and pH
Fungal Gen. Biol., doi: 10.1016/j.fgb.2014.02.003
[ 2014 ]
Fernandez-Fueyo E, Ruiz-Dueñas FJ, Martínez AT Engineering a fungal peroxidase that degrades lignin at very acidic pH
Biotechnol. Biofuels, 7: 114
[ 2014 ]
Fernandez-Fueyo E, Ruiz-Dueñas FJ, Martínez MJ, Romero A, Hammel KE, Medrano FJ, Martínez AT Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability
Biotechnol. Biofuels, 7: 2
[ 2014 ]
García-Ruiz E, Maté D, González-Pérez D, Molina-Espeja P, Camarero S, Martínez AT, Ballesteros A, Alcalde M Directed evolution of ligninolytic oxidoreductases: from functional expression to stabilization and beyond
In "Cascade Biocatalysis. Integrating Stereoselective and Environmentally Friendly Reactions", First Edition.
Edited by Sergio Riva and Wolf-Dieter Fessner. Wiley-VCH Verlag GmbH & Co
[ 2014 ]
González-Pérez D, Alcalde M Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae
Bioengineered, 5: 254-263
[ 2014 ]
González-Pérez D, García-Ruiz E, Ruiz-Dueñas FJ, Martínez AT, Alcalde M Structural determinants of oxidative stabilization in an evolved versatile peroxidase
ACS-Catalysis, 4: 3891-3901
year2019
Different fungal peroxidases oxidize nitrophenols at a surface catalytic tryptophan
Linde D, Ayuso-Fernández I, Ruiz-Dueñas FJ, Martínez AT
Arch. Biochem. Biophys., 668: 23-28
Dye-decolorizing peroxidase (DyP) from Auricularia auricula-judae and versatile peroxidase (VP) from Pleurotus eryngii oxidize the three mononitrophenol isomers. Both enzymes have been overexpressed in Escherichia coli and in vitro activated. Despite their very different three-dimensional structures, the nitrophenol oxidation site is located at a solvent-exposed aromatic residue in both DyP (Trp377) and VP (Trp164), as revealed by liquid chromatography coupled to mass spectrometry and kinetic analyses of nitrophenol oxidation by the native enzymes and their tryptophan-less variants (the latter showing 10–60 fold lower catalytic efficiencies).
Download the article for free until July 5th on: https://authors.elsevier.com/a/1Z3YPw0NEPWp
Official webpage of

[ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by
garcíarincón