Optimized oxidoreductases for medium and large scale industrial biotransformations
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
Private area


Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2017 ] Rencoret J, Pereira A, del Río JC, Martínez AT, Gutiérrez A Delignification and Saccharification Enhancement of Sugarcane Byproducts by a Laccase-Based Pretreatment Sustainable Chem. Eng., 5: 7145-7154
[ 2017 ] Rodríguez-Escribano D, de Salas F, Pardo I, Camarero S High-Throughput Screening Assay for Laccase Engineering toward Lignosulfonate Valorization Int. J. Mol. Sci., 18: 1793-1803
[ 2016 ] Acebes S, Fernandez-Fueyo E, Monza E, Lucas F, Almendral D, Ruiz-Dueñas FJ, Lund H, Martínez AT, Guallar V Rational Enzyme Engineering Through Biophysical and Biochemical Modeling ACS-Catalysis, 6: 1624-1629
[ 2016 ] Couturier M, Mathieu Y, Li A, Navarro D, Drula E, Haon M, Grisel S, Ludwig R, Berrin JG Characterization of a new aryl-alcohol oxidase secreted by the phytopathogenic fungus Ustilago maydis Appl. Microbiol. Biotechnol., 100: 697-706
[ 2016 ] de Salas F, Pardo I, Salavagione HJ, Aza P, Amourgi E, Vind J, Martínez AT, Camarero S Advanced Synthesis of Conductive Polyaniline Using Laccase as Biocatalyst PlosOne, 11
[ 2016 ] del Río JC, Prinsen P, Cadena EM, Martínez AT, Gutiérrez A, Rencoret J Lignin–carbohydrate complexes from sisal (Agave sisalana) and abaca (Musa textilis): chemical composition and structural modifications during the isolation process Planta, 243: 1143-1158
Different fungal peroxidases oxidize nitrophenols at a surface catalytic tryptophan
Linde D, Ayuso-Fernández I, Ruiz-Dueñas FJ, Martínez AT
Arch. Biochem. Biophys., 668: 23-28

Dye-decolorizing peroxidase (DyP) from Auricularia auricula-judae and versatile peroxidase (VP) from Pleurotus eryngii oxidize the three mononitrophenol isomers. Both enzymes have been overexpressed in Escherichia coli and in vitro activated. Despite their very different three-dimensional structures, the nitrophenol oxidation site is located at a solvent-exposed aromatic residue in both DyP (Trp377) and VP (Trp164), as revealed by liquid chromatography coupled to mass spectrometry and kinetic analyses of nitrophenol oxidation by the native enzymes and their tryptophan-less variants (the latter showing 10–60 fold lower catalytic efficiencies).

Download the article for free until July 5th on: https://authors.elsevier.com/a/1Z3YPw0NEPWp

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón