Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2016 ] van Kuijk SJA, del Río JC, Rencoret J, Gutiérrez A, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability J. Anim. Sci. Biotechnol., 7: 55
[ 2016 ] Viña-Gonzalez J, González-Pérez D, Alcalde M Directed evolution method in Saccharomyces cerevisiae: Mutant library creation and screening J. Vis. Exp., doi: 10.3791/53761
[ 2015 ] Alcalde M Engineering the ligninolytic enzyme consortium Trends Biotechnol., 33: 155-162
[ 2015 ] Babot ED, del Río JC, Cañellas M, Sancho F, Lucas F, Guallar V, Kalum L, Lund H, Gröbe G, Scheibner K, Ullrich R, Hofrichter M, Martínez AT, Gutiérrez A Steroid hydroxylation by basidiomycete peroxygenases: A combined experimental and computational study Appl. Environ. Microbiol., doi: 10.1128/AEM.00660-15
[ 2015 ] Babot ED, del Río JC, Kalum L, Martínez AT, Gutiérrez A Regioselective Hydroxylation in the Production of 25-Hydroxyvitamin D by Coprinopsis cinerea Peroxygenase ChemCatChem, 7: 283-290
[ 2015 ] Baratto MC, Sinicropi A, Linde D, Saez-Jimenez V, Sorace L, Ruiz-Dueñas FJ, Martínez AT, Basosi R, Pogni R Redox-Active Sites in Auricularia auricula-judae Dye-Decolorizing Peroxidase and Several Directed Variants: A Multifrequency EPR Study J. Phys. Chem. B, 119: 13583-13592
year2015
Redox-Active Sites in Auricularia auricula-judae Dye-Decolorizing Peroxidase and Several Directed Variants: A Multifrequency EPR Study
Baratto MC, Sinicropi A, Linde D, Saez-Jimenez V, Sorace L, Ruiz-Dueñas FJ, Martínez AT, Basosi R, Pogni R
J. Phys. Chem. B, 119: 13583-13592

Peroxide-activated Auricularia auricula-judae dye-decolorizing peroxidase (DyP) forms a mixed Trp377 and Tyr337 radical, the former being responsible for oxidation of the typical DyP substrates (Linde et al. Biochem. J., 2015, 466, 253-262); however, a pure tryptophanyl radical EPR signal is detected at pH 7 (where the enzyme is inactive), in contrast with the mixed signal observed at pH for optimum activity, pH 3. On the contrary, the presence of a second tyrosine radical (at Tyr147) is deduced by a multifrequency EPR study of a variety of simple and double-directed variants (including substitution of the above and other tryptophan and tyrosine residues) at different freezing times after their activation by H2O2 (at pH 3). This points out that subsidiary long-range electron-transfer pathways enter into operation when the main pathway(s) is removed by directed mutagenesis, with catalytic efficiencies progressively decreasing. Finally, self-reduction of the Trp377 neutral radical is observed when reaction time (before freezing) is increased in the absence of reducing substrates (from 10 to 60 s). Interestingly, the tryptophanyl radical is stable in the Y147S/Y337S variant, indicating that these two tyrosine residues are involved in the self-reduction reaction.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón