Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2016 ] Ewing TA, Gygli G, van Berkel WJ A single loop is essential for the octamerisation of vanillyl alcohol oxidase FEBS J., doi: 10.1111/febs.13762
[ 2016 ] Fernandez-Fueyo E, Ni Y, Gomez Baraibar A, Alcalde M, van Langen LM, Hollmann F Towards preparative peroxygenase-catalyzed oxyfunctionalization reactions in organic media J. Mol. Cat. B, doi: 10.1016/j.molcatb.2016.09.013
[ 2016 ] Fernandez-Fueyo E, Ruiz-Dueñas FJ, López-Lucendo MF, Pérez-Boada M, Rencoret J, Gutiérrez A, Pisabarro AG, Ramírez L, Martínez AT A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus Biotechnol. Biofuels, 9: 49
[ 2016 ] Fernandez-Fueyo E, Younes SHH, van Rootselaar S, Aben RWM, Renirie R, Wever R, Holtmann D, Rutjes FPJT, Hollmann F A Biocatalytic Aza-Achmatowicz Reaction ACS-Catalysis, 6: 5904-5907
[ 2016 ] Garajova S, Mathieu Y, Beccia MR, Bennati-Granier C, Biaso F, Fanuel M, Ropartz D, Guigliarelli B, Record E, Rogniaux H, Henrissat B, Berrin JG Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose Sci. Rep., 6: 28276
[ 2016 ] González-Pérez D, Mateljak I, García-Ruiz E, Ruiz-Dueñas FJ, Martínez AT, Alcalde M Alkaline versatile peroxidase by directed evolution Catal. Sci. Technol., 6: 6625-6636
year2016
Activities of Secreted Aryl Alcohol Quinone Oxidoreductases from Pycnoporus cinnabarinus Provide Insights into Fungal Degradation of Plant Biomass
Mathieu Y, Piumi F, Valli R, Carro J, Ferreira P, Faulds CB, Record E
Appl. Environ. Microbiol., 82: 2411-2423
Auxiliary activities family 3 subfamily 2 (AA3_2) from the CAZy database comprises various functions related to ligninolytic enzymes, such as fungal aryl alcohol oxidases (AAO) and glucose oxidases, both of which are flavoenzymes. The recent study of thePycnoporus cinnabarinusCIRM BRFM 137 genome combined with its secretome revealed that four AA3_2 enzymes are secreted during biomass degradation. One of these AA3_2 enzymes, scf184803.g17, has recently been produced heterologously inAspergillus niger Based on the enzyme's activity and specificity, it was assigned to the glucose dehydrogenases (PcinnabarinusGDH [PcGDH]). Here, we analyze the distribution of the other three AA3_2 enzymes (scf185002.g8, scf184611.g7, and scf184746.g13) to assess their putative functions. These proteins showed the highest homology with aryl alcohol oxidase fromPleurotus eryngii Biochemical characterization demonstrated that they were also flavoenzymes harboring flavin adenine dinucleotide (FAD) as a cofactor and able to oxidize a wide variety of phenolic and nonphenolic aryl alcohols and one aliphatic polyunsaturated primary alcohol. Though presenting homology with fungal AAOs, these enzymes exhibited greater efficiency in reducing electron acceptors (quinones and one artificial acceptor) than molecular oxygen and so were defined as aryl-alcohol:quinone oxidoreductases (AAQOs) with two enzymes possessing residual oxidase activity (PcAAQO2 andPcAAQO3). Structural comparison ofPcAAQO homology models withP. eryngiiAAO demonstrated a wider substrate access channel connecting the active-site cavity to the solvent, explaining the absence of activity with molecular oxygen. Finally, the ability ofPcAAQOs to reduce radical intermediates generated by laccase fromP. cinnabarinuswas demonstrated, shedding light on the ligninolytic system of this fungus.

Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón